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Chemistry of the gas phase is essentially a study of 
what happens when atoms and molecules collide with 
one another. If the gas is not too dense, then one only 
needs to consider the collision of an individual atom or 
molecule with another individual atom or molecule. 
From a detailed understanding of this relatively simple 
binary encounter one can, in principle (and to some 
extent in practice), deduce the macroscopic kinetic 
properties of the gas, such as rate constants for chemical 
reaction, relaxation times for decay of molecular excita- 
tion (electronic, vibrational, or rotational), and trans- 
port coefficients. 

From another point of view, the accurate measure- 
ment of atomic and molecular scattering properties 
under single-collision conditions can lead to rather 
direct, quantitative information about the inter- 
molecular forces between the collision partners. For 
the simplest collision system, the elastic scattering of 
two atoms, this “inversion problem” (the construction 
of that unique intermolecular potential which produces 
a given set of scattering data) is essentially s o l ~ e d , ~ - ~  
and Buck and Pauly5 have recently carried out the pro- 
cedure in constructing the Na-Hg interatomic po- 
tential directly from molecular beam scattering data. 
For a more complicated collision system the inversion 
problem has not yet been rigorously solved, but it is 
nevertheless possible to obtain some quantitative in- 
formation about the intermolecular potential. 

Study of the dynamics of elemental atomic and mo- 
lecular collisions, therefore, has two-pronged implica- 
tions: one can use the collision results, obtained ex- 
perimentally or theoretically, to deduce (via the ma- 
chinery of statistical mechanics) macroscopic observ- 
ables, or one can start with experimentally obtained 
scattering data and work backward to construct the 
intermolecular potential giving rise to the observed 
scattering. Figure 1 illustrates the relation between 

(1) See, for example, J. 0. Hirschfelder, C. F. Curtiss, and R. B. 
Bird, “Molecular Theory of Gases and Liquids,” Wiley, New York, 
N. Y., 1954. 

(2) 0. B. Firsov, Zh.  Eksp .  Teor. Fiz. ,  24,279 (1953). 
(3) W. H. Miller, J .  Chem. Phys., 51,3631 (1969). 
(4) T.  J. P. O’Brien and R. B. Bernstein, {bid., 51, 5112 (1969). 
(5) U. Buck and H .  Pauly, ibid., 51, 1662 (1969). 

these various stages of chemical theory from the “ele- 
mentary particles” of chemistry to macroscopic ob- 
servables; theory of, an experiments pertaining to, 
atomic and molecular collisions thus stand midway in 
our understanding of gas-phase chemistry. 

There is another sense, too, in which molecular 
dynamics is an intermediate case. Although quantum 
mechanics governs the dynamics of all particles, from 
electrons to baseballs, i t  obviously makes sense to use 
classical mechanics to treat the dynamics of macro- 
scopic bodies, a t  no loss of meaningful accuracy. Elec- 
trons, on the other hand, a t  energies of chemical interest 
(less than a few electron volts, e.g.)  are highly quantum- 
like, and serious error would result by use of classical 
mechanics to describe their dynamics. Atoms and 
molecules obviously fall somewhere between these 
extremes, but the questions of immense importance are : 
to what extent are the dynamics of these collisions 
adequately described by classical mechanics, and in 
precisely what manner, if a t  all, does quantum mechan- 
ics manifest itself? 

The answer to these questions depends a great deal 
on “which direction” in Figure 1 one wishes to go- 
i . e . ,  the purpose for which the collision theory is to be 
used. Since one expects a t  least the gross dynamical 
features of the collision to be adequately described by 
classical mechanics, the averagings over internal states, 
relative velocity, etc., necessary in deriving macro- 
scopic observables will likely obliterate any quantum 
effects in these quantities. It requires more refined, 
higher resolution scattering data, however, to extract 
much quantitative information about the intermo- 
lecular potential; correspondingly greater detail is thus 
required in the theoretical treatment of the collision, 
so that it is much more likely that “quantum effects” 
will come into play when one attempts to go in this 
direction (from stage 3 to stage 2 in Figure 1). It 
may even turn out that the observed quantum effects 
themselves will be a rather direct handle on certain 
quantitative features of the intermolecular potential; 
this is indeed the case for elastic atom-atom scattering. 

Although quantum effects in the case of elastic 
atom-atom scattering can be quite striking and pro- 
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(1) electrons, nuclei, h, e ,  c, me 
4 (electronic Schroedinger equation) 

(2) Intermolecular potentials 
f (collision theory) 

(3) dynamics of individual, binary collisions: 
4 (statistical mechanics) 

(4) macroscopic ra te  phenomena: reaction rate  coefficients, 

Figure 1. An outline of the stages necessary to determine 
macroscopic chemical properties beginning only with electrons, 
nuclei, Coulomb’s law, and the physical constants. The  double 
arrow between stages 2 and 3 indicates the possibility of going in 
either direction: one can solve the collision problem to  predict 
the scattering features expected for the system on the basis of a 
given intermolecular potential, or one may begin with experi- 
mental measurements a t  stage 3 and at tempt  to solve the “inverse 
scattering problem”-that is, to construct the intermolecular 
potential from the observed scattering data .  

cross sections 

relaxation times, transport coefficients 

nounced, an important fact is that they can all be ac- 
counted for (even quantitatively) by the appropriate 
use of classical mechanics.fi In  fact, it is the principal 
contention of this Account that essentially all quantum 
dynamical effects in atomic and molecular collisions can 
be adequately treated by the appropriate use of classical 
mechanics. The remainder of the article will outline 
just what is this “appropriate use” of classical me- 
chanics and discuss the way in which various quantum 
effects are contained in the semiclassical theory. In  
short, one employs the classical limit of quantum 
mechanics rather than using classical mechanics 
directly.’ 

Classical Limit of Quantum Mechanics 
To clarify the difference between the classical limit of 

quantum mechanics and classical mechanics itself, con- 
sider some process involving a transition from an initial 
state 1 to some final state 2. The observed quantity, 
classically or quantum mechanically, is the transition 
probability P1,*. To compute P1,2 quantum me- 
chanically one must solve the Schroedinger equation 
and obtain first a transition amplitude (or S-matrix ele- 
ment) X1,2, the square modulus of which gives the 
transition probability 

Pl,2 = ISl,Zj2 (1) 

Proceeding classically, on the other hand, one uses the 

(6) The first giant step in the semiclassical theory of elastic scatter- 
ing was by K. W. Ford and J. A. Wheeler [Ann. Phys .  ( N e w  York ) ,  7, 
259, 287 (1959) 1, and the basic semiclassical idea (classical mechanics 
plus quantum superposition) has been advanced in relation t o  elastic 
scattering by a number of workers, notably F. T. Smith [ J .  Chem. 
Phys . ,  42,2419 (1965) ] and R. J. Munn, E. A.  Mason, and F. J. Smith 
[ibid. ,  41, 3978 (1964) 1. A fairly recent comprehensive survey which 
summarizes these semiclassical treatments of elastic scattering in a 
unified way is R.  B. Bernstein, Adoan. Chem. Phys. ,  10,75 (1966). 

(7) The semiclassical theory to be discussed has been developed and 
applied in a series of papers: (a) W. H. Miller, J .  Chem. Phys . ,  53, 
1949 (1970); (b) ibid. ,  53, 3578 (1970); (c) Chem. Phys .  Lett., 7, 431 
(1970). Some other important work along this same line is: (d) 1’. 
Pechukas, Phys .  Rev., 181, 166, 174 (1969); (e) R. A .  hlarcus, J. 
Chem. Phys . ,  in press. A different semiclassical approach, still with 
many ideas in common with ours, has been formulated in a series of 
papers by (f) R.  J. Cross, Jr., i b id . ,  52, 5703 (1970), and earlier work 
cited therein. 

classical equations of motion to obtain a transition 
probability directly, never making reference to a transi- 
tion amplitude. The classical limit of quantum me- 
chanics means use of the classical equations of motion 
to generate the classical approximation to Sl,z from 
which the transition probability is then obtained by the 
quantum mechanical prescription (eq 1). 

The difference between these two ways of using 
classical mechanics becomes apparent if one supposes 
that there are tn-o (or more) classical paths, or tra- 
jectories, which give rise to the 1 - 2 transition. The 
completely classical approximation gives 

P1,FL = PI + PI1 ( 2 )  
where pI and p11 are the probabilities (obtained by solv- 
ing the classical equations of motion) associated ~ i t h  
trajectories I and 11, respectively. The classical ap- 
proximation to S1,2 is 

where PI and p11 are the same quantities as in eq 2 ,  and 
91 and $11 are the classical actions associated with the 
two classical paths. Forming the square modulus of 
eq 3 gives the semiclassical expression 

pl,2cL + interference (4) 

It is the interference term that the purely classical ap- 
proach misses and which is the quantum effect. 

The only extent to which quantum mechanics is re- 
tained, therefore, is through t’he quantum principle of 
superposition--that# one adds probability amplitudes for 
indistinguishable processes and squares, rather than 
vice versa. A concise statement of the overall ap- 
proach is that one employs classical dynamics, but 
quantum mechanical superposition. From another 
point of view, one may say that a quantum mechanical 
formulation of the collision problem is employed but 
with a11 dynamical parameters appearing in t’he quan- 
tum mechanical expressions evaluated by the appro- 
priate use of classical mechanics. 

The above discussion has indicated how interference 
feat’ures appear when one constructs the classical limit 
of the S matrix (or, for short, t’he classical S matrix) and 
then uses it quant’um mechanically. The only other 
type of quantum dynamical effects (apa’rt from quanti- 
zation of bound degrees of freedom) is tunneling. It 
will be seen below how this is also contained in this 
semiclassical approach. Tunneling is actually a dif- 
ferent type of “interference”; &her t’han there being 
oscillatory structure due to the interference, however, 
there is a damping effect. 

(8) We are assuming throughout that only one electronic state of 
the system is involved: there are obviously other quantum effects 
which arise when more than one such state participates in the collision. 
There are, too, nondynamical quantum effects arising due to the in- 
distinguishability of identical particles: these effects, however, are 
easily incorporated in the semiclassical framework: one solves the 
dynamical problem classically, treating all particles as distinguish- 
able, and then adds the probability amplitudes which correspond to 
interchange of identical particles. See Smiths for this idea, applied to 
collisions involving syinmetic charge transfer. 
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We now outline the approach by which the classical 
limit of quantum mechanics is actually carried out. 

The Feynman Propagator 
Feynmang has developed a formulation of quantum 

mechanics that is particularly well suited to a semi- 
classical analysis. The approach focuses on the quan- 
tum mechanical time evolution operator (also known 
as the propagator) 

U(tP,tl)  = exp[-iH(tz - tl)/fiI ( 5 )  

where H is the (time-independent) Hamiltonian 
governing the system. The propagator determines the 
time evolution of the system in that the wave function 
at  any time tz is related to that a t  an earlier time tl by 
eq 6. Another way of interpreting the propagator is 

9(t*) = br(tZ,m(h) (6) 

that its matrix elements in any representation are the 
transition amplitudes between the basis states; for 
example, in the coordinate representation eq 7 is 

( ~ 2 1  ~ ( t Z , t 1 ) 1 ~ 1 )  = (rzlexp[-iH(tz - tl)/fi]jrl) (7) 
the probability amplitude that the particle is at position 
y2 at  time t z  if it  was at  position y1 at  time t l ;  the square 
modulus of this matrix element is the probability of this 
“event .” 

The basic tenent of Feynman’s quantum mechanics 
is that the propagator can be expressed as eq 8, where 

(rzlexp[-iH(tz - h)/fill~1} - exp{i$[r(t)I/fi) (8) 

the ‘(sum over all paths’’ is actually a special kind of 
integral (a path integral) over all functions r ( t ) ,  re- 
stricted only so that r ( t l )  = rl and ?(&) = rz ;  the sym- 
bol - in eq 8 means that there is an overall normaliza- 
tion which is unspecified. in eq 8 is the 
classical action associated with the function r ( t ) .  

This formulation of quantum mechanics (which is 
completely equivalent to the conventional Schroe- 
dinger approach) has actually not proven useful in 
many cases for quantum mechanical calculations, for it 
is only possible to evaluate path integrals in a few 
special cases. Equation 8 is extremely useful, however, 
in obtaining the classical limit of the propagator; in 
this limit (f i + 0) the oscillatory character of the inte- 
grand means that only those paths contribute about 
which the action functional $ [ r ( t ) ]  is stationary-i.e., 
the classical pathdo (or path) which connect r1 and r2. 
In  the classical limit, therefore, eq 8 becomes eq 9, 

all paths 

The function 

classical 
paths 

where the sum is now an ordinary finite sum over the 
classical paths for which r(t2) = rz and r(t l)  = rl. 

(9) R. P. Feynman and A. R. Hibbs, “Quantum Mechanics and 
Path Integrals,” McGraw-Hill, New York, N. Y., 1965. 

(10) It is well known that the requirement on the path r ( t )  ex- 
pressed by 8 + [ ~ ( t ) ]  = 0, Hamilton’s principle, is equivalent to the 
classical equations of motion for the path. 

To see that there can be more than just one term in 
eq 9, consider the nature of classical mechanics. If the 
position rl and momentum pl  are specified at  time tl, 
then r ( t )  and p ( t )  are determined for all later times; 
in particular r2 r ( t z )  is uniquely determined, so that 
one may write rz(r l ,pl) ,  meaning that rZ is indeed a 
single-valued function of rl and pl .  I n  eq 9, however, 
rl and r2 are the independent variables which specify 
the classical trajectory, and it is not necessarily true 
that rl and r2 determine a unique trajectory (as do rl and 
pl); in other words, with rl fixed, there may be more 
than one value of pl (and therefore several classical 
paths) which lead to the same value of r2, 

It cannot be overemphasized that the “double-ended” 
boundary conditions discussed in the preceding para- 
graph are the appropriate ones to use for making the 
correspondence between classical and quantum me- 
chanics; failure to realize this has led in the past to the 
belief that  the deterministic nature of classical me- 
chanics was incompatible with quantum mechanics. l 1  

It is the specification of rl and pl  as boundary conditions 
for the trajectories which is incompatible with quantum 
mechanics (i.e., the uncertainty principle), and not 
classical mechanics itself; as has been seen above, there 
is a direct correspondence between probability ampli- 
tudes in quantum mechanics and classical trajectories 
with “double-ended” boundary conditions. 

The Classical S Matrix 
With the classical limit of the propagator established, 

it is a short step to the S matrix itself. If H is the total 
Hamiltonian governing the collision system and Ho 
is the Hamiltonian for the noninteracting collision 
partners, then 

(10) s = eiHotn/lt -iH(ta-ti)/h -iHati/A e e 

;.e., S is the propagator with the unperturbed time de- 
pendence (that due to H,) subtracted out in the correct 
manner.12 X is not a function of time, for the scattering 
boundary conditions imply the limit ( tz  - tl) --t m in 
eq 10; it is to ensure the existence of this infinite time 
limit that  the unperturbed time dependence must be 
subtracted out in the definition of S. 

The physical S matrix, the transition amplitude from 
some initial state of Ho to a final state of Ho, is the 
matrix of the above S operator in the following particu- 
lar representation. One transforms from the ordinary 
coordinates and momenta to  that particular set of 
generalized coordinates and momenta known as action- 
angle variables;l3 the momenta (the action variables) 
are the constants of the motion of Ho and are the precise 
classical equivalent of the quantum mechanical quan- 
tum numbers; the conjugate coordinates are phase 
angles. The desired S-matrix is the matrix of S in the 
momentum representation of these variables. If ( p , q )  

(11) (a) A. Burgess and I. C. Percival, Advan. At. Mol. Phys., 4, 
109 (1968) ; (b) D. Rapp and T. Kassal, Chem. Rev., 69, 61 (1969). 

(12) R. G. Newton, “Scattering Theory of Waves and Particles,” 
McGraw-Hill, New York, N. Y., 1966, pp 160-162. 

(13) H. Goldstein, “Classical Mechanics,” Addison-Wesley, Read- 
ing, Mass., 1950, pp 288-307. 
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denote the set of action-angle variables, then 

since the states Ip) are eigenstates of H,. From eq 10 
and 11, therefore, the S matrix is related to the propa- 
gator by eq 12, or with the classical approximation to 

t8he propagator one finds the classical S matrixI4 to be 
given by eq 13, where the sum is over all classical paths 

for which the action is p l  before collision and pz after 
collision; the phase + in eq 13 is 

with y ( t )  and p ( t )  being determined by the classical 
equations of motions 

dP d H ( p , q )  
dt bq 
- = - -  

The appropriate classical-limit normalization has 
also been supplied in eq 13; it has a simple physical 
interpretation which can be seen by the following argu- 
ment. Considering p1 to be fixed throughout, the 
classical equations of motion determine a unique rela- 
tion between, q1 and p z ;  i.e., given pl, p z  is determined, 
or given p 2 ,  y1 is determined. Thus the probability 
distributions of y1 and p z  are related by 

Prob(p,)dp, = Prob(q1)dql 

i e . ,  for fixed pl, the probability that p2 has a specific 
value in the interval ( p z ,  pz + dp,) times the increment 
dp, is equal to the probability that y1 has a specific 
value in the interval (al, ql + dq1) times the increment 
dq,. However, the uncertainty principle implies that, 
with p l  fixed, pl can have any value ( i e . ,  it is random), 
or that the distribution in q1 is constant. The above 
relation, therefore, states that 

and by invoking unitarity of the propagator one can 
S ~ O T @  that the ‘(constant” is l l ( 2 ~ ) ;  the square 
modulus of each term in eq 13, therefore, is the proba- 
bility of the p l  + p z  transition associated with that, par- 
ticular trajectory and is simply the Jacobian relating the 
final momentum to the initial coordinate.’j 

The expressions above have all been written as 
though there were just one degree of freedom and one 
pair of coordinates and momenta. This has been done 
only for simplicity of presentation, however, and the 

(14) More details of the steps involved in proceeding from eq 12 
t o  eq 13 are given in ref 7a. 

approach is applicable to systems of any number of de- 
grees of freedom; the formulas are generalized in a 
fairly straightforward manner. 

Example : Vibrational Excitation 
The general ideas presented above become much 

clearer by discussion of a simple example.7b The sys- 
tem consists of a diatomic molecule nith a vibrational 
degree of freedom and an atom, constrained so that all 
three atoms lie on a line.‘6 

Initially the atom is moving toward the diatom with 
some definite velocity and with the diatom in some 
definite vibrational state with quantum number nl. 
After colliding, the atom departs, leaving the diatom 
in some final vibrational state, n2; the dynamical ob- 
servable is the probability matrix Pn2 ,1, giving the 
probability that the final vibrational quantum number 
is n2 provided the initial one is nl. The probability is 
given in ternis of an S-matrix element in the usual 
manner, and we wish to construct the classical approxi- 

mation to  S,,,,, according to the general prescription of 
the preceding section. 

This system possesses two degrees of freedom: trans- 
lation, characterized by ordinary coordinate R and 
momentum P; and vibration, characterized by its ac- 
tion variable n (the classical counterpart of the vibra- 
tional quantum number) and phase angle q:  for an 
isolated oscillator only integral values of 71 are allowed, 
and in this way quantization is achieved. (This is the 
standard semiclassical quantum condition. 

Even for this fairly simple system, however, it is not 
possible to solve the quantum mechanical or classical 
equations of motion in closed form; one is forced to 
solve then numerically. To evaluate the general ex- 
pression for the classical S matrix (eq 13), one must find 
the classical trajectories for nhich n has the value nl 
before collision and the value ’11, after collision; this 
is done in the following manner. The initial coordinate 
and momentum q1 and nl are specifiedI8 and the classical. 
equations of motion integrated numerically; this 
determines some definite final value of 7 1 2 ,  and we write 
n2(@,721) with the meaning that nz is a function of q1 and 
nl (the functional value of which is determined by inte- 
grating the classical equations of motion with these 
initial conditions). The desired initial value nl can 

(15) This is exactly analogous to the Jacobian relation for simple 
elastic scattering whereby the classical differential cross scction is 
derived 

.(e) sin e dB = bdb 

u ( e )  = b ldb jde  l/sin e 
which implies that 

See ref 12, p 126, for more details. 
(16) For a recent review of various classical and quantum me- 

chanical treatments of this collision system, see ref l l b .  
(17) See, for example, E. Rlerzbacher, “Quantum Mechanics,” 

TViley, NeivYorli, S .  Y., pp 119-121. 
(18) The initial translational momentum P is determined by 

specifying the total energy, and the scattering boundary conditions 
require only that R be so large initially that the two collision partners 
are noninteracting. 
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therefore be chosen directly, but one does not know 
what value to  choose for q1 so that n2(q1,nl) takes on the 
specified integer value nz; this value of y1 must there- 
fore be determined iteratively. 

Figure 2 shows the function nz(q1,nl) as a function of 
ql, with nl = 1. The dotted line a t  n2 = 2 indicates 
the graphical solution of the equation n2(q1,1) = 2; 
i.e., it  is clear that there are two values of y1 for which 
nz(ql,nl) takes on the value 2, or that there are two 
classical trajectories for which n is 1 before collision and 
2 after collision. There are two terms, therefore, in the 
classical S matrix 

where p = [ 2 ~ l n ~ ’ ( q ~ ) [ ] - ~ ,  with q1 = 41 for PI and ~ I I  

for pII. The situation is just like that discussed 
earlier; the completely classical approximation for 
P,,,,, is the sum of the probabilities associated with the 
two trajectories (eq 16)) whereas the semiclassical 

Pn,,nlCL = PI + ~ 1 1  (16) 

approach provides the interference term19 

Pn2,nlSC = PI + ~ I I  + 2(p1p11)l/~ sin (A+) (17) 

Figure 3 shows typical results of this approach for the 
case that the mass of the atoms and potential param- 
eters are chosen to correspond to a H2 + He collision; 
for light atoms such as these the quantum effects should 
be prominent and thus provide a severe test for the 
semiclassical theory. The solid line connects points 
which are essentially the exact quantum mechanical 
values20 of the transition probability; on the scale of 
this drawing these values are essentially indistinguish- 
able from the semiclassical results.21 The dashed line 
connects points of the completely classical approxima- 
tion in which the interference term is omitted. 

It is clear in these results just how important are the 
interference effects; a judgment of classical mechanics 
based on the purely classical approximation, omitting 
the interference term, would indicate it to be completely 
unrealiable as to the magnitude of individual transition 
probabilities. One might conclude that the dynamics 
of these collisions was highly quantum-like. The fact 
is, though, that classical mechanics describes the 
dynamics extremely accurately, and the quantum ef- 
fects all arise through the quantum principle of super- 
position. 

Figure 3 also illustrates the fact that  the completely 
classical approach is correct on the average. If one 
were to look at the net transition probability resulting 
from a sum over several final vibrational states, or an 
average over several initial ones, then it is clear that 
the completely classical approximation would be more 

(19) The interference term is sin (A+) ,  rather than cos (A+) ,  due to 
the ?r/2 phase difference arising because m’(q1) has a different sign for 
the two terms in eq 15. 

(20) D. Secrest and B. R. Johnson, J. Chem. Phys., 45, 4556 
(1966). 

(21) To obtain such good numerical results one must actually em- 
ploy a uniform semiclassical formula which is obtained from eq 17; 
see ref 7b for details of this procedure. 

Y 
0 0.2 0.4 0.6 0.0 I .o 

- I  

c, / 2 H  

Figure 2. An example of the trajectory function n2(ql,nl) as dis- 
cussed in the text; this example has n1 = 1 and corresponds to EL 

linear H2 + He collision (see ref 7b for more details). This func- 
tion is the final value of the classical action variable n (the 
classical counterpart to the quantum mechanical quantum 
number) as a function of the initial value of the action, nl, and the 
initial value of the phase of the oscillator, 91; Le. ,  one specifies nl 
and q1 and integrates .the classical equations of motion, and n2 is 
thus determined. The dotted line at  7tz = 2 indicates the graph- 
ical solution for the two values of pl which satisfy the equation 
n2(q1,nl) = n2, here with n2 = 2, nl = 1. 

satisfactory. As discussed earlier, this is the expected 
nature of things. If one is interested primarily in 
deriving macroscopic kinetic properties, this situation 
is viewed as fortunate-one can disregard quantum in- 
terference effects. If one is interested in gaining pre- 
cise information about the intermolecular potential, 
however, this is discouraging, for it means that macro- 
scopic kinetic measurements will be of little use for this 
purpose, experiments detecting the results of single- 
collision processes being required. 

Classically Forbidden Transitions (Tunneling) 
In Figure 2 one sees another feature that can arise in 

this semiclassical theory. Suppose one is interested 
in the 1 --t 5 transition; since there is no value of q1 for 
which n2(q1) = 5, there is no classical trajectory for 
which nl = 1 and n2 = 5 ;  the transition probability is 
therefore zero. Such a transition is referred to  as 
classically forbidden. 

Although there are no real values of q1 for which 
n2(ql) = 5, one can easily show that there are complex 
values.22 For example, if nz(ql) in Figure 3 is expanded 
in a Taylor series about its maximum 

n&) = nZ2 + l / m ” ( q l Z ) ( ~ ~  - 4 1 ~ ) ~  + . . . 
then one can solve 

to  obtain 

q1 = 412 f 42[5  - 7@]//nz”j) 

i.e., there are two complex roots, complex conjugates 
of one another. In  general one can show that the exact 

(22) The situation is exactly analogous to the rainbow effect in 
simple elastic scattering; see BernsteinP A classically forbidden 
transition is analogous to being on the “dark side” of the rainbow 
angle. 
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n 

Figure 3. Transition probabilities for linear H, + He collisions 
(see ref 7b for more details) with initial vibrational quantum 
number nl = 0 (top), 1, and 2 (bottom). The dotted lines con- 
nect results of the completely classical approximation (eq IO), and 
the solid lines connect the exact quantum mechanical results of 
ref 15; on the scale of this drawing there is essentially no differ- 
ence between the exact quantum results and the uniform semi- 
classical results of ref 7b and 7c. 

complex roots of eq 18 are complex conjugates of one 
another. 

Furthermore, the phase difference between these two 
roots is purely imaginary; consequently one can show 
that the oscillatory expression of eq 17 becomes 

P,,,,, = pe- lA@'  (19) 
Le. ,  the complex exponential functions are replaced by 
real exponential functions. The factor p in eq 19 is a 
Jacobian, as earlier, and the negative exponential factor 
expresses the fact that the transition is classically for- 
bidden, ie., that it takes place by tunneling (the ex- 
ponential damping is characteristic of tunnelingz3). 

Tunneling transitions, therefore, have smaller prob- 
abilities than nontunneling, or classically allowed ones. 
If one is again interested in a net transition probability 
involving a number of transitions, some of which are 
classically allou-ed and others of which are classically 
forbidden, the classically forbidden transitions will 
make a negligible contribution in comparison to the 
allowed ones. Tunneling, therefore, will be a signifi- 
cant effect only if all of the transitions are classically 
forbidden, or if one explicitly selects individual quan- 
tum states initially and detects individual quantum 
states finally. 

In  Figure 3 the transitions 0 - 0, 0 + 4, 1 + 5 ,  
2 + 6 are all classically forbidden; the semiclassical 
theory accounts for these, however, as accurately as it 

(23) Consider, for example, the probability of a particle tunneling 
through a one-dimensional barrier; the probability is exp( - 28), 
where 0 is the barrier penetration integral (the classical action for this 
process); see ref 17, pp 121-122. 

does the classically allowed transitions. Although the 
above discussion has been specifically related to the 
linear atom-diatom model problem, the features are 
general and expected to be typical of any system. 

One other interesting advantage of this semiclassical 
approach to tunneling is that one sees exactly what role 
tunneling plays in the process of interest. If one per- 
forms a strictly quantum mechanical calculation for the 
transition probability, there is actually no way to tell 
what tunneling is; quantum mechanics does not dis- 
tinguish between classically forbidden and classically 
allowed processes. To assess the importance of tunnel- 
ing, therefore, it is necessary to have a well-defined 
procedure that actually distinguishes tunneling pro- 
cesses. Since the semiclassical theory does this, it  
could provide a useful way to study precisely, for 
example, the part tunneling plays in the dynamics of 
chemical reactions. 

Resonances 
I t  is not our intention to discuss here in detail the 

phenomenon of resonances, or quasi-bound statesz4 in 
molecular collisions, but to indicate briefly how this 
quantum effect appears in the present semiclassical 
framework. 

One generally refers to tx-o types of resonances, 
distinguished on physical grounds by the nature of inter- 
action giving rise to the short-lived collision complex; 
it has been pointed outz4 that in quantum mechanics 
there is actually not a precise distinction b e k e e n  these 
two types. In  the semiclassical theory, however, the 
two types of resonances are definitely different, and 
this again points to a usefulness of the semiclassical 
approach in studying a dynamic system. 

Potential, or single particle, resonances come about 
by tunneling of the translational degree of freedom; 
they are therefore classically forbidden processes. 
This is the only type of resonance that can occur in 
purely elastic scattering.25 

Internal excitation, or Feshbach-type resonances, on 
the other hand, are classically allowed processes in the 
semiclassical theory. They can arise, however, only 
when at least one of the collision partners has internal 
degrees of freedom, and may be thought of in the follow- 
ing manner. Considering the linear atom-diatom 
example discussed above, suppose the long-range atom- 
diatom interaction is attractive; upon colliding, the 
diatom may be excited to a vibrational state which 
would be energetically forbidden if the colliding atom 
were not present and, by virtue of the attractive inter- 

(24) R. D. Levine, Accounts Chem. Res., 3, 273 (1970). 
(25) The semiclassical treatment of potential resonances is one of 

the principal topics regarding elastic scattering which is not discussed 
in Bernstein's review article (ref e ) ,  The first work on this was that 
of K. W. Ford, D. L. Hill, Xi, Wakano, and J. A. Wheeler, Ann. Phys. 
(AVew York ) ,  7, 239 (1959), and more recent contributions have been 
made by A I .  V. Berry, Proc. Phys. Soc., 88, 285 (1966); R. B. Bern- 
stein, C. F. Curtiss, S. Iman-Rahajoe, and H. 1'. Wood, J .  Chem. 
Phus., 44, 4072 (1966); P. M. Livingston, ibid., 45, 601 (1966); R. 
R. Herm, ibid., 47,4290 (1967) ; W. H. Miller, i b id . ,  48, 1651 (1968) ; 
J. N. L.  Connor, Mol.  Phys., 15, 621 (1968). 
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action, lowering the energy so that this vibrational state 
is temporarily accessible. When the atom and diatom 
begin to separate, however, energy conservation pre- 
vents the atom from escaping; it stops and returns 
toward the diatom. These multiple collisions can 
take place any number of times, until the diatom is 
finally deexcited to  a state for which the relative trans- 
lational energy makes it possible for the atom and 
diatom to separate. This type of resonance or collision 
complex is being examined to some detail in classical 
trajectory studies. 26 

Conclusions and Outlook 
It has been shown how the effect of interference and 

tunneling in molecular collisions can be described com- 
pletely within the framework of classical mechanics, 
provided one uses classical mechanics to construct the 
classical limit of the quantum mechanical transition 
amplitude, or S-matrix element, for the process of 
interest, and then manipulates it quantum mechan- 
ically. The quantum effects arise solely as a conse- 
quence of the quantum principle of superposition- 
that one adds the probability amplitudes corresponding 
to indistinguishable processes rather than the probabili- 
ties themselves. 

Although quantum effects are accounted for qualita- 
tively by this semiclassical theory, there remains the 
question of the quantitative accuracy of this approach. 
Preliminary studies with some simple examples (the 
linear atom-diatom) indicate classical mechanics to  be 
quite accurate when used in this manner, but more 
thorough studies, particularly with more realistic 
dynamical systems, are required before definitive con- 
clusions can be made about the typical accuracy one 
expects. Even in cases for which the semiclassical 
treatment may not be accurate enough quantitatively, 
it  may still be valuable in illucidating dynamical fea- 

(26) P. Brumer and M. Karplus, private communication. 

tures obscured in a completely quantum mechanical 
calculation, such as the degree to  which tunneling par- 
ticipates in the transition under study. 

Due to the averaging over internal and translational 
degrees of freedom, interference effects in macroscopic 
rate quantities should ordinarily be neglible. In  fact, 
the conclusion seems to be developing2’ that “a little 
averaging goes a long way” in washing out quantum 
interference structure; i.e., it may be that these effects 
will only be observable in completely state-selected, 
single-collision experiments. For this reason, too, it is 
doubtful that  anything beyond a strictly classical treat- 
ment is warranted for collisions involving large mole- 
cules (i.e., larger than diatomic), since complete state 
selection for such systems is out of the question.*s 

Quantum effects are expected to be important, how- 
ever, when one attempts to deduce precise quantitative 
information about the intermolecular potential for 
simple systems (atoms, and diatomic molecules) from 
single-collision scattering data, the reason being that 
data sufficiently accurate for this purpose will almost 
certainly detect them; in fact, they may be quite promi- 
nent in such high resolution data. Furthermore, it may 
be that the quantum effects themselves, coupled with a 
semiclassical analysis, will provide a direct handle on 
certain quantitative features of the intermolecu‘ar 
potential without a complete solution of the inversion 
problem. 
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(27) On the basis of work in progress of applying this semiclassical 
treatment t o  the rotational excitation of a diatomic molecule by colli- 
sion with an atom. 

(28) This is also a natural limit for the practicality of the present 
semiclassical theory: to quantize the internal degrees of freedom 
correctly it is necessary that the noninteracting problem be exactly 
solvable so that the transformation to action-angle variables can be 
carried out; this is only possible for two body systems (Le . ,  diatomic 
molecules). 


